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A Dorsiventral Leaf Model (DLM) is presented to simulate leaf radiative transfer. DLM was conceived as a
plate model with a stochastic distribution of different groups of layers. Leaf asymmetry was modeled by
assigning non-uniform distributions of pigments, water and dry matter to palisade and mesophyll layers and
by simulating different amounts of light diffusion for adaxially and abaxially incident light. Surface
reflections are based on micro-facets theory enabling the simulation of directional–hemispherical reflectance
and a range of bidirectional reflectance factors. Adaxial and abaxial optical properties could be accurately
simulated for a variety of leaf types with an overall error in reflectance and transmittance below 1.3%.
Sensitivity analysis focused on optimizing model inversion schemes improves parameter estimation
accuracy. Different inversion schemes were compared for two independent datasets. Results underpin most
of the propositions of the sensitivity analysis: (i) masking the near-infrared wavelengths (band weighting)
to account for variability in the dry matter composition consistently increased predicted accuracies for dry
matter content, (ii) white reflectance measurements (reflectance with a 100% diffusely reflecting
background) provided results superior to other optical measurements, making it a valuable and fast
alternative and (iii) combining reflectance and transmittance into absorptance however did not result in
improvements. Comparisons of DLM with the PROSPECT 5 model indicate an almost equal performance in
content estimations. Improvements were thus not related to differences in model structure but to techniques
that reduce the impact of leaf structure and compensate for sampling errors and variations in specific
absorption spectra. DLM has important potential in the study of leaf radiative transfer and in the integration
with canopy radiative transfer models.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Leaf optical properties have been recognized as key variables in the
description and modeling of radiative transfer in canopies. The
interaction of electromagnetic radiation with leaves, resulting in
reflection, transmission, absorption and fluorescence, depends on
their chemical and physical characteristics (Allen et al., 1969, 1970;
Jacquemoud & Baret, 1990). In modeling leaf optical properties in the
400–2500 nm range, a wide variety of radiative transfer models exist.
They are classified by Jacquemoud and Ustin (2001) in increasing
order of complexity into plate models (of which the PROSPECT model
of Jacquemoud and Baret (1990) is the best known example), N-flux
models, stochastic models, models based on the radiative transfer
equation and ray tracing models. Models of each class have been used
to obtain accurate and coherent simulation of reflectance and
transmittance of broad-leaved and needle-shaped leaves.
uckens).

l rights reserved.
Major factors impacting the scientific success of existingmodels, in
no specific order, are the model's validation, the ability to invert the
model, its integration with canopy radiative transfer models, the
availability of the model to the scientific community and the model's
complexity.

Recent research has focused on modeling of the leaf bidirectional
reflectance distribution function (BRDF) (Bousquet et al., 2005),
modeling of fluorescence (Zarco-Tejada et al., 2006) and the
possibility of separating pigments such as carotenoids and chlorophyll
a versus b (Feret et al., 2008). Attempts to apply inversion techniques
of leaf radiative transfer models to separate different components of
leaf dry mass such as lignin, cellulose and sugars on fresh leaf spectra
were largely unsuccessful (Fourty et al., 1996), although statistical
approaches proved successful for dry and – to some extent – for fresh
material (Jacquemoud et al., 1995).

The impact of leaf internal structure on its optical properties has
been subject to extensive research. The differences in optical
properties of dorsiventral (also called bi-facial or asymmetric) leaves
have been well described. Woolley (1971) reports higher directional
hemispherical reflectance of abaxial soybean faces than of adaxial
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faces for most of the 400–2700 nm spectrum, but an inversion of this
effect in the near infrared (NIR, 800–1300 nm). Directional hemi-
spherical transmittance of the abaxial face in the NIR was found to be
higher than of the adaxial side. Analogous results were described in
Baldini et al. (1997). Different models have been developed that
account for the dorsiventral structure of leaves. Yamada and Fujimura
(1991) developed a four layer reflectance and transmittance model
based on Kubelka–Munk theory and subsequently applied this model
to predict chlorophyll content. Richter and Fukshansky (1996)
developed and extended a four-flux radiative transfer model for
predicting radiation fluxes inside a leaf using optical microprobe
measurements for calibration. Ma et al. (2007) extended PROSPECT
into the dorsiventral model QSPECT that counts four layers: adaxial
epidermis, palisade mesophyll, spongy mesophyll and abaxial
epidermis. Each layer's optical properties were calculated with the
PROSPECT model with different values for biochemical content and
structure. In addition, leaf optical properties have also been simulated
usingMonte Carlo sampling: Govaerts et al. (1996) developed the ray-
tracing model RAYTRAN to simulate photon transport in a 3D
dorsiventral leaf and Baranoski (2006) developed an Algorithmic
Bidirectional surface scattering Model for Bi-facial leaves (ABM-B)
that uses random walk Monte Carlo sampling to compute optical
properties. The influence of leaf asymmetry into the model's structure
on the retrieval of biochemical properties (model accuracy and bias)
has hitherto not been assessed. A precisemodeling of both adaxial and
abaxial optical properties for broadleaved species is of importance in
remote sensing research since research provided evidence that
ignoring differences between both faces may introduce significant
errors in the simulation of canopy reflectance (Stuckens et al., 2009).
While aforementioned research focused on broad-leaved species,
(Dawson et al., 1998) were able to construct a model that simulated
optical properties of fresh and dried needle-shaped leaves.

Model inversion problems of either leaf or canopy radiative
transfer models are most often tackled by least squares minimization
or table look-up approaches. Both unconstrained and constrained (e.g.
(Kuusk, 1991) who uses a penalty term for unrealistic parameter
values) minimizations are applied. Least squares minimization relies
on important assumptions: the errors between wavebands have to be
uncorrelated with each other and with the independent variables and
have equal variance (Bjõrck, 1996). As these assumptions are rarely
met in hyperspectral remote sensing it can be expected that more
successful inversion schemes can be designed by using band
weighting, alternative definitions of independent variables (spectra)
or neural networks (e.g. Atzberger, 2004; Bacour et al., 2006).

For leaf optical models further improvements in parameter pre-
diction are expected by coherent improvements in the model's
architecture (e.g. including asymmetry) and in inversion techniques.
Additional improvements may be obtained by more accurate estima-
tions of spectral constants such as specific absorption spectra. The first
objective of this research is to develop and validate an algorithmically
fast, invertible model for dorsiventral broad-leaved leaves that can
be implemented in different types of canopy reflectance models.
The second objective is to design an optimized measurement and
inversion procedure that allows amore accurate prediction of biochem-
ical contents.

The Materials and methods section describes the collection and
properties of reference datasets that include spectral measurements
and contents determination. The model description section presents
an analysis of leaf anatomical structure that will be used as a template
for a mathematical formulation of a dorsiventral leaf model (DLM).
The interaction between model parameters and the consequences
of model and measurement errors will be interpreted in the sen-
sitivity analysis. The validation section investigates spectral approx-
imation of measured spectra for both adaxial and abaxial reflectances
and the accuracy of parameter estimations for different model
inversion schemes.
2. Materials and methods

Three datasets were collected. The first dataset, LeuvenC, is a
model calibration dataset consisting of 20 leaves from 12 different
species for which adaxial and abaxial directional-hemispherical
reflectance and transmittance were recorded in March 2009 with a
RTS-3ZC integrating sphere (updated version) coupled to an ASD
Fieldspec spectroradiometer (Analytical Spectral Devices, Boulder,
Co)measuring from 350 to 2500 nmwith a spectral resolution of 3 nm
in the 350–1050 nm range and 10 nm in the 1050–2500 nm range.
Sample holders were removed from the sphere to avoid reduced port
reflectance errors. Scans of 5–10 s per leaf were taken from different
positions and averaged. Leaves were kept on their stems during
measurements to minimize water loss. Data were noise filtered with a
zero phase forward and reverse fourth order Butterworth filter
(Oppenheim & Schafer, 1989). From the same leaves, five 1 s scans
were made with an ASD leaf probe for instrument intercomparison.
The leaf probe measurement chamber has an incandescent light
sourcewith illumination perpendicular to the leaf and a viewing angle
centered at 40°, measuring biconical reflectance (Schaepman-Strub
et al., 2006). Given the limited solid viewing and illumination angles it
will further be approximated by bidirectional reflectance. All spectra
were corrected to absolute reflectance using the manufacturer
provided reflectances of the Spectralon (Labsphere, USA) white-
panels. Additionally an intercalibration between the whitepanels of
the integrating sphere and leaf probe was established. Intercompat-
ibility of both measurement types for modeling purposes is
theoretically treated in Section 4.3 and tested in Section 6.1.

A validation dataset (LeuvenV)was collected in June2008 consisting
of coupled measurements of optical properties and leaf biochemistry
for 107 leaves of 10 species with varying leaf structure: Citrus sinensis
L. (orange), Malus domestica Borkh. (apple), Prunus avium L. (sweet
cherry), Zea mais (corn), Solanum tuberosum L. (potato), Musa sp.
(banana), Populus×canadensis (poplar), Fagus sylvatica L. (beech), Acer
pseudoplatanus (Norway maple) and Euonymus fortunei (albino leaves
of a variegated cultivar). Leaf samples were taken in and spectral and
biochemical analysis were made on the day of sample collection. No
indications of senescence were present in the samples. Sealed plastic
bags and refrigerator storage were used to prevent intermediate
dehydration. Spectral measurements were made with an ASD spectro-
radiometer and a leaf probe. For each leaf, two measurements were
made of adaxial and abaxial reflectance using a matte plastic
background with a flat reflectance spectrum of 4%. The effect of the
background on reflectance measurements was included into the model
structure as described in Section 4.8. An additional pair of measure-
ments was made of the adaxial reflectance with the same Spectralon
whitepanel as a background, hereafter called ‘white (adaxial) reflec-
tance’. This spectral measurement set comprises a fastmethod (1 s scan
timepermeasurement) that can easily be adapted tofieldwork. Per leaf,
drymass andwater contentswere determined byweighting three up to
five fixed area (2.4 cm2) tissue disks in fresh state and after drying at
85 °C in an oven for at least 16 h. In additional drying experiments, the
difference in measured water content between 16 h and a four days
extended drying period was below 0.04 mg/cm2, which is one order of
magnitude smaller than the accuracies obtained in this research.
Chlorophyll a and b and carotenoids were determined on five tissue
samples of 0.79 cm2 by absorption spectroscopy using anUV–VIS Perkin
Elmer Lambda 12 spectrophotometer and an acetone–Tris extraction
solvent. Contentswere calculatedusing the equationsdescribed by Sims
and Gamon (2002) which includes a correction for the absorption by
anthocyanins. These authors report the accuracy of their method when
compared to High Performance Liquid Chromatography (HPLC)
pigment determinations with a coefficient of determination (R2) of
0.96 for chlorophylls.

As a third dataset, the LOPEX dataset (Hosgood et al., 1994) was
used which contains a larger number of biochemical properties and
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leaf reflectance and transmittance spectra of 60 broad-leaved species.
As reported by Feret et al. (2008), the pigment contents in LOPEX are
questionable possibly due to inefficient pigment extraction proce-
dures. Accuracies on LOPEX chlorophyll content estimation are
included in the analysis to facilitate comparison with other published
results but should be treated with care. Table 1 summarizes relevant
properties of the LeuvenV and LOPEX datasets.
Fig. 1. Structure of a typical dorsiventral leaf.
3. Analysis of abaxial and adaxial optical properties

Fig. 1 shows the structure of a dorsiventral leaf, typical for most
broad-leaved dicot species. The palisade mesophyll layer consists of
densely packed cells with few intercellular spaces. The underlying
spongy mesophyll is loosely packed with large intercellular spaces.
The adaxial (top) and abaxial (bottom) sides of the leaf are bound by
an epidermal layer with a cuticle of varying thickness. Quantification
studies in sun-lit and shade leaves of Spinacia oleracea (Cui et al.,
1991) and Acer platanoides (McCain et al., 1993) reveal that the
highest chloroplast concentrations are found in the palisade tissue,
with lower concentrations in the spongy tissue and almost no
chloroplast concentrations in the epidermal layers.

Fig. 2 shows typical directional–hemispherical reflectance and
transmittance spectra of the adaxial and abaxial sides of two leaves,
Urtica dioica L. (nettle) and Hedera helix L. (ivy) with different
dorsiventral structures. Marked differences between adaxial and
abaxial optical properties exist (i) in the VIS region (400–700 nm)
where abaxial reflectance exceeds adaxial reflectance with approxi-
mately equal transmittances, (ii) in the NIR region (700–1400 nm),
where the adaxial reflectance is higher and the adaxial transmittance
is lower and (iii) in the SWIR region (1400–2500 nm) where abaxial
reflectance is higher in the water absorption bands and both positive
and negative differences are found in the 1600–1800 and 2000–
2400 nm regions. In addition, Baldini et al. (1997) report additional
reflectance and transmittance plots between 400 and 1100 nm from
which similar conclusions can be drawn. An important observation
from Fig. 2, which confirms observations by Woolley (1971) and
Baldini et al. (1997) is that the (NIR) transmittance of the abaxial side
is systematically higher than on the adaxial side. This observation is in
seeming conflict with the reciprocity relation (or polarity property)
for transmitted light (Kubelka, 1954) which states that scattering and
absorption are unaffected when the path of light is exactly reversed.
For a directional–hemispherical configuration this implicates that at
the opposite face of the leaf the hemispherical–directional transmit-
tance is measured, under the same zenith angle. This is not applicable
Table 1
Characteristics of the datasets.

Dataset Leuven

Year 2008
Number of samples 107
Number of species 10
Instrument ASD Fiel
Spectral range 400–250
Solvent Acetone
Pigment extraction method Sims and

Total chlorophyll (g/cm2) Min 0.4
Max 113.8
Mean 39.2

Carotenoids (g/cm2) Min 0.3
Max 8.5
Mean 22.2

Water (mg/cm2) Min 3.9
Max 41.2
Mean 13.7

Dry matter (mg/cm2) Min 1.8
Max 12
Mean 6.2
to our model and measurements that consider a directional–
hemispherical configuration at both faces. As a consequence differ-
ences in transmittance from both faces of a surface are physically
plausible and should not be attributed to measurement errors.

Aforementioned observations can be explained by considering the
cross-section of a dorsiventral leaf:

1. The compact structure of the palisade layer was found to facilitate
penetration of adaxial light into the spongy tissue (Vogelmann &
Martin, 1993), where the light is scattered due to the large amount
of cell–air interfaces of the more loosely packed cells. Elevated
concentrations of chlorophyll in the palisade layer will further
reinforce this effect. For abaxial illumination, the scattering by the
spongy mesophyll cells occurs before light can be guided into the
leaf interior, which increases the reflectance.

2. The difference between adaxial and abaxial directional–hemispher-
ical transmittance canbeexplainedby representinga leaf as a stackof
‘optical’ layers separated by air spaces (Fig. 1). The adaxial epidermis
and palisade tissue are connected over most of their surface with
almost no intercellular spaces and are therefore be represented by a
LOPEX

1993
64 (pigments)/330 (water and dry matter)
50

dSpec FR Perkin Elmer Lambda 19
0 nm 400–2500 nm
80% w. Tris buffer (pH 7.8) Acetone 100%
Gamon (2002) Lichtenthaler (1987)

0.5
72.6
20
0.6
15.8
4.4
4.3
43.9
11.3
1.7
15.2
5.3



Fig. 2. Reflectance and transmittance of abaxial an adaxial faces of Urtica dioica and Hedera helix.
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single optical layer of which the mesophyll tissue causes light
scattering (Vogelmann & Martin, 1993). The abaxial epidermis is
disconnected from the spongy tissue over a large fraction of its
surface and is therefore expected to optically function as a separate
layer. The generally smooth oblate shape of epidermal tissue
(Baranoski, 2006; Taiz & Zeiger, 2006) is expected to cause low
amounts of scattering and even focusing of light (Vogelmann et al.,
1996). Abaxial collimated light is thus not fully diffused upon
entering the abaxial epidermis (bottom layer) but onlyuponentering
the spongy tissue (middle layers) while adaxial collimated light is
immediately diffused by the top optical layer. As a consequence,
abaxial transmittance can be higher than adaxial transmittance due
to the lower total amount of light scattering.

3. The effects in the SWIR region can be considered as amixture of the
previous items, with the concentration effect dominating in high
absorption regions and the dispersion effect dominating in low
absorption regions.

In the following sections, an analytical Dorsiventral Leaf Model
(DLM) is developed that takes into account the described asymmetric
behavior of light scattering and absorption.

4. Model description

DLM is based on the well known plate generalized model (Allen
et al., 1970) that simulates reflectance and transmittance of leaves
represented by a set of horizontal layers separated by air spaces. First,
the adaxial and abaxial optical properties of a single layer are
determined for a generalized case of partly diffused light. Next, the
optical properties of a stack of non-identical layers is derived. For the
top layer onwhich light is incident, themodel formulation is extended
to either directional–hemispherical reflectance (DHR) and transmit-
tance (DHT) or bidirectional reflectance factor (BRF) (Schaepman-
Strub et al., 2006). In the subsequent sections, default model
parameters are established, the refractive index of cell walls is re-
calibrated and the platemodel is extended to calculate leaf reflectance
with a background of known reflectance.

4.1. Reflectance and transmittance of a single layer

Reflectance and transmittance of a single layer in DLM are a
generalization of the formulation derived in Jacquemoud and Baret
(1990), for conditionswhere light inside a layer is not necessarily fully
diffused. Consider a layer illuminated by either a collimated or diffuse
light source. The layer's hemispherical reflectance and transmittance
are derived from the average of the Fresnel transmission coefficients
(t) at the air-to-cell and cell-to-air interfaces and the average
transmissivity (τ) of light passing through it. The value of t depends
on the maximum dispersion angle of the light (α for light outside of
the layer and α̃ for light inside the layer), the relative refractive index
of the layer (η) and the direction in which light crosses the interface.
An analytical formulation is given in Allen et al. (1969). We will use to
for light entering a layer (air-to-cell interface) and ti for light leaving
the layer (cell-to-air interface). The angular distribution of incident
light may be different for both faces of a layer, so α and α̃ depend on
the direction of illumination (z), which is abaxial (z= ‘b’) or adaxial
(z= ‘d’). The average transmissivity τ(α̃,k) is found by averaging the
Beer–Lambert law over α̃:

τ ~α; kð Þ =
R ~α
0 e−k= cos θð Þ cos θ sin θ dθR ~α

0 cos θ sin θ dθ

=
1

1− cos2 ~α
e−k 1− kð Þ + e−k = cos ~α cos ~α k − cos ~αð Þ + E1 kð Þ− E1

k
cos ~α

� �� �

ð1Þ

where k is the absorption coefficient of a layer and E1 stands for the
exponential integral (for a mathematical proof, see online documen-
tation). For α̃=90 the formula simplifies to the version used in
Jacquemoud and Baret (1990). The reflectance (Rz) and transmittance
(Tz) of a layer with light incident from direction z can now be
expressed as:

Rz = Rs +
Tsτð~αz ; kÞ2tið~αz ;ηÞð1− tið~αz ; ηÞÞ

1− τð~αz ; kÞð1−tið~αz ;ηÞÞ2

Tz =
Tsτð~αz ; kÞtið~αz ;ηÞ

1− τ ~αz ; kÞ 1−ti
~αz ;ηÞÞ2

��� ð2Þ

with Rs the surface reflectance and Ts the surface (hemispherical)
transmittance of the layer (see Section 4.3). For leaf internal scattering
(all layers except the top layer), we will use Allen's approximation
where Ts= to(αz,η) and Rs=1−Ts. For the top layer a more detailed
treatment is presented in Section 4.3. The reflectance and transmit-
tance of a layer illuminated by either adaxial or abaxial sides will be
represented by a four element vector: [Rz=d, Tz=d, Rz=b, Tz=b].

4.2. Reflectance and transmittance of a group of layers

In calculating the reflectance and transmittance of a group of
homogeneous layers, Jacquemoud and Baret (1990) extended the
‘generalized plate model’. In this symmetric model, abaxial and
adaxial optical properties are equal. This plate model theory is further
improved here to model the asymmetry of dorsiventral leaves. A four-
layer representation of a leaf (Fig. 3) was developed for DLM. The top
layer (P) represents the aggregate of adaxial epidermis and palisade
mesophyll. Both are assumed to optically represent a single layer, as
motivated in Section 3) and will henceforth be simply named
‘palisade layer’. This assumption agrees with the results of Ma et al.
(2007) who treated the adaxial epidermis as a separate layer, but
assigned to it a very low structure parameter. The second and third
layers represent the spongy mesophyll (M1 and M2). The lower
epidermis (E) is treated as a fourth layer since it is not always tightly
connected to the spongy mesophyll (see Fig. 1 and Section 3). The



Fig. 3. Schematic structure of the Dorsiventral Leaf Model for three out of eight layer
groups with adaxial and abaxial illumination. The bottom line shows the group
probabilities.
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choice of two spongy mesophyll layers and thus a four layer leaf
representation has no direct physical basis, but was chosen as an
upper bound in representing the (near-infrared) scattering behavior
that is expected to be dominant in the spongy layers. Simulations with
different model structures revealed that a four-layer leaf structure
was sufficient to model the scattering of all leaves in the Leuven and
LOPEX datasets while a three layer representation was insufficient for
thicker leaves.

Contrary to the traditional interpretation of layers in plate models,
in DLM two adjacent layers are separated by air spaces for only a
fraction (fair) of their surface area and are connected for the remainder
fraction (1−fair). The parameter fair determines the scattering
behavior and is analogous to the structure parameter N in the
PROSPECT model. It is equal for each pair of adjacent layers. The
adaxial and abaxial reflectance and transmittance of two adjacent
layers (A and B) for the area over which they are separated by air
spaces, can be given in the four-element notation:

RAB;d; TAB;d;RAB;b; TAB;b
h i

= RA;d +
TA;dRB;dTA;b
1− RA;bRB;d

;
TA;dTA;d

1− RA;bRB;d
; RB;b +

TB;bRA;bTB;d
1− RA;bRB;d

;
TB;bTB;b

1− RA;bRB;d

" #

ð3Þ

The fractional area over which A and B are connected (no air
spaces) on the other hand, can be represented by a single layer with a
layer absorption coefficient kAB=kA+kB. The above formulas for two
layers can be iteratively applied to find reflectance and transmittance
of three and finally four layers. The reflectance and transmittance of
an entire leaf consists of a combination of reflectances and
transmittances of the eight possible permutations in which four
layers can either be separated or connected: [P▪M1▪M2▪E]; [PM1▪M2▪E];
[P▪M1M2▪E]; [P▪M1▪M2E]; [PM1M2▪E]; [P▪M1M2E]; [PM1▪M2E]; [PM1M2E].
In this notation a dot indicates separation by air spacing and
connected letters indicate connected layers. The upper part of Fig. 3
visualizes these combinations, while the lower part illustrates a detail
of a single permutation ([PM1▪M2▪E]). The total leaf reflectance and
transmittance (RTleaf) is then a weighted average of the reflectances
and transmittances of the individual permutations (RTi):

RTleaf =
X8
i=1

wiRTið Þ ð4Þ

with the weights given as wi= fair
n fair

3−n where n equals the number of
air layers (number of dots) in the permutation. The eight weights
form a binomial distribution and sum up to one so no normalization is
required.
4.3. Reflectance of the top layer

In this section we will derive expressions for BRF and DHR of leaf
surfaces for implementation in DLM. BRDF modeling of leaf surfaces
has been subject to research in domains of computer graphics (e.g.
Habel et al., 2007) and remote sensing (Bousquet et al., 2005;
Govaerts et al., 1996). Surface reflectance is derived from the
Bousquet micro-facets model (calibrated on beech, laurel and hazel
leaves) and allows an intercompatibility relationship to be established
between DHR and BRF of leaf surfaces. The leaf BRDF in Bousquet's
model is represented as the sum of a diffuse component (BRDFd)
representing the leaf interior absorption and scattering and a glossy/
specular component (BRDFs) related to the cuticle surface reflectance:
BRDF=BRDFs+BRDFd. This formulation is not directly compatible
with plate models (Eq. (2)) and does not assure energy conservation
(Ashikhmin & Shirley, 2000) as it does not account for Fresnel-based
reduced reflectance i.e. light reflected off a surface does not enter the
leaf interior and does not contribute to diffuse reflectance. The previous
equation is therefore extended to: BRDF=BRDFs+(1−DHRs)BRDFd
where DHRs is the directional–hemispherical surface reflectance
obtained by hemispherical integration of BRDFs. BRDFs is calculated
using the Cook and Torrance (1981) model:

BRDFs η λð Þ; θs; θv;uv;σð Þ = Fr η λð Þ; θað ÞD α;σð ÞG θs; θv;uvð Þ
4 cos θs cos θv

c ð5Þ

with λ the wavelength, θs the light incident angle, θv the viewing
angle, φv the relative azimuth, η(λ) the refractive index of the cuticle
that is assumed to be equal to cell walls, θa the half-angle between
illumination and viewing directions, α the angle of the facets normals,
σ a surface roughness parameter, Fr the Fresnel reflectance, D a
(normalized) micro-facets distribution function, G a shadowing term
and c a normalization constant. Of these terms only the Fresnel term
depends on wavelength (λ).

For implementation in DLM we restrict calculations to collimated
light incident perpendicular to the leaf surface (θs=0) and viewing
angles between 0 and 45° (θab22.5°) which conforms with optical
designs of commonly used measurement instruments such as leaf
probes and integrating spheres. Under such conditions it can be
derived (see online documentation) that θa=α=θv/2, BRDFs no
longer depends on φv and the Fresnel reflectance almost equals the
Fresnel reflectance at normal incidence: Fr(η,θa)≈Fr(η,0) (relative
errorb1%). The BRFs (equal to πBRDFs) can be closely approximated
by the product of two separate terms: the Fresnel factor and a
wavelength-independent term (ν) that depends on viewing geometry
and surface roughness:

BRFs η λð Þ; θv;σð Þ≈m θv;σð ÞFr η λð Þ;0ð Þ; θv < 45o ð6Þ

Monte Carlo simulations on the Bousquet micro-facets model with
a wide range of refractive indices (between 1.1 and 1.6) and surface
roughnesses (between 0.2 and 1) show that errors of this approxi-
mation were below 10−4 for θvb45° (see online documentation). In a
second Monte Carlo experiment equal accuracy standards were
obtained for the DHRs so that:

DHRs η λð Þ;σð Þ≈μ σð ÞFr η λð Þ;0ð Þ ð7Þ

withμ a different constant that only dependson surface roughness. Now
the values ofRs and Ts of Eq. (2) can bedetermined. ForDHR simulations,
Rs=DHRs and Ts=1−DHRs and for BRF simulations, Rs=BRF and
Ts=1−DHRs since Ts stands for hemispherical transmittance in both
cases. BRF and DHR for these conditions only differ in their specular
components and the difference between both is independent of
biochemical content or leaf internal scattering. While DHR can be
measured with an integrating sphere, derivations made for BRF can be
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ported, without loss of accuracy, to biconical reflectance (e.g. measured
with a leaf probe) since this integrates bidirectional reflectance over
viewing and illumination directions (Schaepman-Strub et al., 2006).

4.4. Model parameters

The absorption coefficients (k) of the palisade and spongy
mesophyll layers and the abaxial epidermis are expressed as linear
combinations of the different layer biochemical contents (in mass per
unit area) with their respective specific absorption spectra (κ(λ) in
unit area permass). Further analysis will be restricted to the fourmain
components of a leaf's biochemical composition (Fourty et al., 1996;
Feret et al., 2008): total chlorophyll a+b (Cchl), total carotenoids
(Ccar), water (Cwat) and total dry matter (Cdm). For easier parametri-
zation the following generalizations are made: (i) water and dry
matter contents in each layer are present in equal proportions with
respect to the total leaf contents, (ii) the chlorophyll and carotenoids
contents in each layer are also present in equal proportions, (iii) the
biochemical contents in the spongy mesophyll layers are equal and
(iv) the adaxial epidermis contains a reduced chlorophyll content
(only in stomatal cells; (Taiz & Zeiger, 2006)). The absorption
coefficient of each layer can now be found for known values of
these four components and the fractions of the total pigment content
(βpigm) andwater and dry matter content (βwdm) in the palisade layer
and the fraction of pigments in the abaxial epidermis (βep).

The arrows on the bottom drawing of Fig. 3 show the scattering of
light between the different layers. Light incident upon a leaf is
collimated with normal incidence. Leaf surface roughness is modeled
as described in Section 4.3 and parametrized by μ for DHR and by μ
and ν for BRF. Adaxially incident light is assumed to be diffused inside
the palisade layer so that ~αd = 90o for all layers. The abaxial
epidermis on the other hand is expected to cause only partial light
diffusion (~αb =δ; δb90°) considering its relative smoothness, light
focusing and optical thinness of the epidermal tissue (Section 3). After
crossing the first cell–air boundary light will become fully diffuse
(~αb =90°), as is the light in intercellular air spaces (αd=αb=90°).
Fully and partly diffused light beams are indicated in Fig. 3. An
important consequence of different values for ~αb and ~αd inside a
single layer is that the layer and overall leaf directional–hemispherical
transmittance can be different for abaxial and adaxial illumination.

Since the refractive index spectrum (η(λ)) and the specific
absorption spectra of the leaf components (κ(λ)) are treated as
optical constants, the leaf optical properties can be represented by the
following parameters: Cchl, Ccar, Cwat, Cdm, βpigm, βwdm, βep, fair, μ, ν
and δ.

4.5. Default leaf asymmetry and roughness parameters

Since a total number of 11 parameters is expected to decrease the
performance of inversion algorithms, causing them to become ill-
posed, default average values are determined for the asymmetry
parameters βpigm, βwdm and βep and for the leaf roughness parameter
μ. This allows choosing between inversion schemes in which these
parameters are either fixed or free (estimated by the inversion
algorithm). Knapp et al. (1988) report more than 50% of the
chlorophyll content in the upper 270–300 μm of a leaf cross-section
with a 400 μm palisade layer thickness. Measurements of paradermal
sections made by McCain et al. (1993) reveal approximately 67% of
the leaf chlorophyll in the palisade layer, 31% in the spongy tissue and
4% in both epidermal layers together. Estimates of fractional mass in
different layers can be obtained from measurements of intercellular
space volume and layer thickness in epidermal, spongy and palisade
tissues. Values derived from Evans et al. (1996) on six different
species range between 49 and 62% of leaf mass present in the upper
epidermis and palisade tissue, while values derived from Pääkkönen
et al. (1995) on fresh and aging Birch leaves range between 44% and
51%. Model inversion on directional–hemispherical abaxial and
adaxial reflectance and transmittance leaves of the LeuvenC dataset
return average values of 0.52 for βpigm and 0.44 for βwdm which is
within the range of values reported in literature. Since DLM is an
abstraction of leaf structure, its parameters should be treated as
effective parameters (i.e. different from the true values they are
supposed to represent but resulting in equal optical interactions).
Therefore inverted values are preferred. Inverted values for βep

(chlorophyll in lower epidermis) range between 7% and 25% with an
average of 11%, which is relatively high. It may be assumed that the
bottom layer effectively represents the abaxial epidermis and a
fraction of the spongy tissue.

An average value for leaf roughness (μ) was estimated on the LOPEX
dataset that consists of a larger number of directional–hemispherical
adaxial reflectance measurements. A first estimate is based on model
inversion (see Section 6) with μ as an additional free parameter,
resulting in an average value of 1.19. A second estimate is based on the
reflectance in the 400–450 nm range. Model calculations reveal that in
leaves with moderate to high chlorophyll (N40 μg/cm2) and carotenoid
(N10 μg/cm2) contents thediffuse part of the reflectance is less than0.1%
so that almost the entire reflectance is due to glossy reflections of the
leaf cuticle. Usingmoderate or high chlorophyll and carotenoid contents
as a selection criterion an average value of 1.14 was obtained, which is
close to the previous estimate.

4.6. Specific absorption spectra

While the specific absorption coefficient of water has been directly
measured (κ), the spectra of the other components have been
determined by Jacquemoud and Baret (1990), Jacquemoud et al.
(1996) and later by Feret et al. (2008) using model inversion. These
spectra are being used in DLM, assuming that their shape is
determined by the underlying physics, while their level (scaling)
may be model-dependent.

4.7. Refractive index of cell walls

The refractive index spectrum of cell walls has been re-calibrated
since its values were found to be significantly influenced by the
difference in model structure between DLM and PROSPECT and more
specifically by the assumptions of asymmetry. The calibration is made
on 67 measurements of reflectance and transmittance of fresh leaves
in the LOPEX dataset (five spectra averaged per species) for which ν
(directional hemispherical) and δ (only adaxial) are not required. For
each leaf Cchl, Ccar, Cwat, Cdm, fair and μ are determined from model
inversions or measurements while fixed values (Section 4.5) are used
for βpigm, βwdm and βep so that for each model layer, κ (Eq. (2)) can be
found. The resulting values of η(λ) were averaged resulting in the
spectrum of Fig. 4. This spectrum significantly differs from values
obtained by Feret et al. (2008) in their recalibration of the cell walls
refractive index and its shape is closer to a monotonically decreasing
line from approximately 1.5 at 400 nm down to 1.3 at 2500 nm. To
evaluate whether these differences may be caused by differences in
estimation procedures rather than by differences in model asymme-
try, the procedure was repeated with parameter settings representing
a perfectly symmetric leaf, analogous to the PROSPECT model (βpigm,
βwdm and βep equal to 0.25). This result shows a shape similar to the
spectrum of Feret et al. (2008). The effect of a symmetric model
structure on the estimation of η(λ) applied on dorsiventral leaves
thus seems to cause a bias that is most pronounced in the 450–700,
1400–1550 and 1850–2000 nm wavelength ranges. A plausible cause
is that at wavelengths of high absorption, most of the light entering a
leaf is absorbed regardless of leaf asymmetry so that cuticular
reflectance determines the estimated refractive index; at low
absorption wavelengths, scattering dominates absorption so that
biochemical content distributions (and thus asymmetry) have little



Fig. 4. Inverted spectra of the cell refraction index obtained from (i) DLM with a
dorsiventral leaf assumption (ii) DLM with a symmetric leaf assumption and (iii) Feret
et al. (2008).

2566 J. Stuckens et al. / Remote Sensing of Environment 113 (2009) 2560–2573
effect; at zones of moderate absorption however, leaf reflectance and
transmittance are more sensitive to biochemical content distributions
and leaf asymmetry. The refractive index used in symmetric radiative
transfer models such as PROSPECT is thus likely to be considered as an
effective variable.

4.8. White reflectance and reflectance with a background

Inversion procedures for the estimation of biophysical content
from optical measurements often require both reflectance and
transmittance spectra. Different attempts have been made to replace
both properties with one comprehensive measurement of which the
concept of infinite reflectance (Allen et al., 1969; Lillesaeter, 1982) is
the most widely known. It is defined as the reflectance of an optically
thick stack of leaves, where the reflectance no longer increases with
an increasing number of leaves. Even though infinite reflectance has
important properties for the estimation of scattering and absorption
coefficients and for the simulation of canopy reflectance, its practical
use in the simulation of leaf optical properties is constrained by the
requirement of a pile of almost identical leaves. An alternative and
more convenient measure is the adaxial reflectance of leaves with a
matte high reflective background (Lillesaeter, 1982), hereafter named
white (adaxial) reflectance or Rwh. Using plate theory, white
reflectance can be calculated for an asymmetric layer as:

Rwh = Rd;c +
Td;cTb;sRwp

1− RwpRb;s
ð8Þ

with Rd,c and Td,c the adaxial reflectance and transmittance for
collimated light, Rb,s and Tb,s the abaxial reflectance and transmittance
of diffusely scattered light and Rwp the (absolute) reflectance of the
whitepanel. White reflectance was combined with adaxial reflectance
by Merzlyak et al. (2004) to estimate leaf transmittance. This
procedure however required the additional assumptions that abaxial
and adaxial reflectances and transmittances are equal and that
differences between collimated and diffuse light can be ignored.
Since this violates both our observations (Section 3) and our model
structure and considering the significant errors produced by this
estimation procedure, it was preferred here to directly measure and
model white reflectance (see Section 2) rather than converting to
transmittance. Important optical properties of white reflectance as an
alternative to reflectance and transmittance are treated in the
sensitivity analysis. Analogously to white adaxial reflectance, also
white abaxial reflectance can be defined, but to reduce the total
number of optical measures and inversion schemes being discussed in
this text, this is not further discussed.

By replacing Rwp in Eq. (8) by the reflectance of any other
(Lambertian) background, the reflectance of a leaf with different
backgrounds can easily be calculated.

5. Sensitivity analysis

The sensitivity analysis is set up to provide more insights into the
mechanisms that can cause random or systematic differences
between predicted and measured biochemical variables. It breaks
down into three modules. The first module assesses the sensitivity of
simulated spectra to the model parameters. The second module
focuses on the sensitivity to natural variability in a specific absorption
spectra. The last module deals with the effects of sampling errors on
model inversions.

5.1. Sensitivity of DLM to varying parameter values

The sensitivity of DLM was tested by evaluating differences in
model output by the 11 parameters that drive the model. Model
outputs considered here are adaxial and abaxial reflectance and
transmittance, white reflectance and absorptance. The applied
method is a variance based sensitivity analysis using the high
dimensional model representation (HDMR) implementation devel-
oped by Ziehn et al. (2009). HDMR methods use a large number of
randomly generated inputs (within operational parameter ranges)
and their corresponding outputs to construct a high-dimensional
Analysis of Variance (ANOVA) decomposition of the output dataset.
The sensitivity of a parameter is often expressed by the Sobol' index
(SI) (Sobol', 2001) that expresses the fraction of the total variance in a
dataset explained by an individual parameter xi (first order terms) or
by the cooperative effect (interaction) of two parameters i and j: xij
(second order terms). For a perfect high-dimensional representation,
all first and second order terms sum up to one. Lower values indicate
unexplained variance. A dataset of 2000 random parameters was
generated with stochastic distributions of biochemical contents (Cchl,
Ccar, Cw and Cdm) derived from the LeuvenV and LOPEX datasets. The
stochastic distributions of the seven structure parameters were
estimated from initial model inversions of the LOPEX and LeuvenC
datasets. For easier visualization the asymmetry effects (βpigm, βwdm,
βep and δ) and BRDF effects (μ and ν) were grouped together. The
second order terms of all interaction effects were relatively small and
are represented as a single group. Fig. 5 shows the Sobol' indices per
wavelength for adaxial and abaxial reflectance, absorptance andwhite
reflectance. For all outputs the chlorophyll and water contents have a
large impact on model sensitivity within their respective absorption
regions. Dry matter content has a much smaller impact on adaxial and
abaxial reflectance indicating that it may be significantly harder to
retrieve with good accuracy. This agrees well with reported results of
model inversions (Feret et al., 2008; Jacquemoud et al., 1996).
Sensitivity to carotenoid content is low for all outputs, but abaxial
reflectance and absorptance provide the highest sensitivity. Sensitiv-
ity to dry matter content of white reflectance and absorptance in
contrast is far higher and dominates the NIR region. This indicates that
use of either of both properties may result in more accurate content
estimations. fair has a large impact on adaxial and abaxial reflectance
in the NIR and noticeable effects in the SWIR but almost no effect on
white adaxial reflectance and absorptance. BRDF effects dominate the
400–500 nm region for most outputs and have small but noticeable
effects in the higher wavelengths. Adaxial reflectance has a limited
sensitivity to leaf asymmetry, mainly for wavelengths in the 1400–
2500 nm range while abaxial reflectance is much more sensitive to
leaf asymmetry over the entire spectrum. This may complicate the use
of abaxial reflectance in content estimations. All outputs are to some
extent sensitive to second order terms, which were found to be



Fig. 5. Sobol' sensitivity index for individual and grouped model parameters and four different optical measures.
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mainly composed of interactions between leaf structure and bio-
chemical contents and interactions among biochemical contents
(results not shown). For all outputs, a small fraction of the total
variance (white part of the graphs) could not be explained by HDMR.

Both absorptance and white reflectance as alternatives to adaxial
reflectance and transmittance may improve model inversions in
applications where only content estimations (and not leaf structure)
are targeted. Sensitivity is highly dependent on the input parameter
ranges, which are derived here for fresh and relatively healthy (non-
chlorotic) leaves of vegetations grown in temperate climatic condi-
tions. Therefore generalization of these conclusions to other datasets
including tropical, chlorotic or senescent leaves should be avoided.

5.2. Sensitivity to variations in specific absorption spectra

This sectionwill focus on (inherent) variability in specific absorption
spectra of dry matter and chlorophylls. For water, multiple measured
and congruent specific absorption spectra have been published (e.g.
Buiteveld et al., 1994; Kou et al., 1993; Segelstein, 1981). We assume
that this spectrum is a physical constant – ignoring any variations that
may be due to within-leaf chemical bonds with other molecules – and
that its published values are sufficiently accurate to ignore any impact
on model sensitivity. For chlorophylls and carotenoids, measured
spectra in acetone or ethanol are available but with different shifts in
peak absorption regions according to the polarity of the solvents. In vivo
spectra have been determined by model inversion (Feret et al., 2008).
These model based spectra are implicitly based on average proportions
of chlorophyll a and b and the different carotenoids, while variations in
these proportions can impact model sensitivity. The specific absorption
spectrum for dry matter is subject to high uncertainty. The spectrum
applied inmultiple versions of the PROSPECTmodel for example, uses a
constant value for wavelengths between 450 and 1200 nm which
illustrates the difficulties in its estimation. In addition and analogously
to chlorophylls and carotenoids, the dry matter specific absorption
spectrum is a weighted average of the molecular absorption spectra of
all the dry matter components of which (hemi)cellulose, lignin, starch,
proteins and sugars are the major groups that are present in different
relative proportions in each leaf. The impact of variations in chlorophyll
and dry matter specific absorption spectra is assessed with the HDMR
global sensitivity analysis as described in Section 5.1. For this purpose,
DLMwas extended so that the chlorophyll a and b fractions (of the total
chlorophyll content) and the (hemi)cellulose, lignin, starch, sugar and
protein factions (of the total dry matter content) can be used as inputs.
For chlorophyll a and b, specific absorption spectra were used from
Maier (2000). Although these spectra were not obtained in vivo and
therefore cannot be directly used formodel inversions, we assume here
that their relative shapes are adequate for assessing the sensitivity to
variations in chlorophyll a and b fractions. The stochastic distribution of
the chlorophyll fractions is obtained frommeasured values in the LOPEX
dataset (Hosgood et al., 1994). Spectra of different dry matter
components as well as their relative distributions were obtained from
Fourty et al. (1996). Considering the uncertainty of these estimated
spectra, results should only be interpreted qualitatively. Fig. 6 shows an
area plot of the Sobol' first order sensitivity indices for leaf absorptivity.
For better visualization, all structureparameters and secondorder terms
are grouped together. The influence of different proportions of
chlorophyll a and b is almost not noticeable and is limited to a small
(b1%) peak between 700 and 750 nm. In contrast, the combined
sensitivity to different proportions of (hemi)cellulose, lignin, starch,
sugars and proteins suggests a large effect between 700 and 1000 nm
that decreases at higherwavelengths. Formodelswhere such variations
cannot be taken into account, variations in the total leaf dry matter
compositionwill increase the fraction of unexplained variance in optical
properties. The NIR region in leaf absorptance spectra, although highly
sensitive to total drymatter content, may thus be subject to a significant
variability that cannotbeexplainedbyonly considering the total leaf dry
matter content. In addition to the effects of mixture compositions
treated here, other factors such as shifts in specific absorption spectra
may further increase the fraction of leaf optical properties that cannotbe
explained.

5.3. Sensitivity of model inversion to sample variability

Thus far we have assumed the measured spectra to be perfect
representations of the average biochemical and structural composi-
tion. This contrasts to real measurements of leaf spectra where only a



Fig. 6. Sobol' sensitivity index for absorptivity spectrum and variations in dry matter
specific absorption spectrum due to differences in fractional contents of lignin, (hemi)
cellulose, proteins, sugar and starch.
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fraction of the leaf is sampled. In the LeuvenV dataset for example,
two measurements per leaf were taken with a spot size of 10 mm. As
pointed out by Castro-Esau et al. (2006), the within leaf variability in
optical properties can be large compared to the between-leaf
variability. This relates well to research by Rascher (2003) who
demonstrated that leaves exhibit distinct spatial heterogeneity in
photosynthetic efficiency. Using a single or a small number of
measurements over a limited area of a leaf may lead to noticeable
errors in representing average leaf optical properties. In addition, also
reference measurements (spectroscopy and dry and fresh weight) are
made on samples (disks) rather than on the whole leaf. The deviation
between reference measurements and parameters derived from
inversion may thus be significant.

Fig. 7 shows the average within-leaf standard deviation in
reflectance of the measurements of the leaves in the LeuvenV dataset.
Although these values are relatively small for adaxial and abaxial
reflectance (b1%), their impact on the agreement between measured
and predicted values of biochemical contents may be significant. The
comparably large standard deviation of white reflectance in the NIR
can be explained by high amounts of lateral (sideways) scattering due
to the interaction of the irregular (nerves) abaxial side with an almost
100% reflecting background: a variable fraction of laterally scattered
light is not captured within the sensor field of view. This was
confirmed (for both measurements with integrating sphere and leaf
probe) by applying different amounts of pressure between the leaf
and the whitepanel. Although this effect is ignored in the following
analysis, it will be instrumental in explaining observed differences in
inversion accuracy in Section 6.2.

To simulate the effects of within-leaf variability, 500 reference
model parameter sets were generated, each being a random draw
from the distributions of chlorophyll, water, carotenoids and dry
matter content in the LeuvenV dataset. Distributions of the structure
Fig. 7. Average standard deviation in measured adaxial (Rd), abaxial (Rb) and white
(Rwh) reflectance between two samples per leaf in the Leuven dataset.
and asymmetry parameters were estimated. From each reference set,
two subsets (a and b) were derived, each with small random
fluctuations in their parameters to simulate the sampling effect.
Within-leaf parameter distributionswere adjusted to produce standard
deviations in reflectance spectra approximately equal to measured
values in the Leuven dataset (Fig. 7). From both subsets optical
propertieswere simulated and combined in different inversion schemes
to estimate the original parameters in the reference set. All inversion
schemes are based on least squares minimization of a cost function H:

H =
X
λ

ÔPa;λ−OPa;λ
� �2

+
X
λ

ÔPb;λ−OPb;λ
� �2 ð9Þ

in which ÔP denotes the modeled and OP the measured optical
properties and depending on the scheme, OPa and OPb may stand for
reflectance, transmittance or white reflectance. A constrained Nelder–
Mead minimization algorithm (Nelder & Mead, 1964) was used. The
four biochemical parameters and the structure parameter were
estimated while other parameters were fixed at their average values
(see also Section 4.5). A larger number of free parameters (e.g.
including the asymmetry parameters) resulted in lower accuracies
due to ill-posedness (multiple set of parameters exists that results in
almost the same optical properties). Six inversion schemes were
included:

• a standard inversion using the reflectance (R) from a and the
transmittance (T) from b;

• an inversion in which reflectance of a and transmittance of b were
combined into absorptance;

• an inversion using the mean of the white reflectance (Rwh) of a and
b;

• three additional inversions using the previous schemes with the NIR
(720–1350 nm) masked out as a rudimentary weighted least
squares technique. Masking was motivated by the conclusions of
Section 5.1 in which the NIR reflectance and transmittance showed
almost no sensitivity to biochemical contents but high sensitivity to
leaf structure.

For each biochemical content and for each scheme the root mean
square error (RMSE) between reference and inverted values was
calculated (Table 2). The rightmost column of the table lists the RMSE
between the reference parameters and the averages of subsets a and b.
This is the best possible estimate given only subsets a and b as inputs
and acts therefore as a lower bound. The standard inversion scheme
(column 1) using reflectance and transmittance and the full range of
wavelengths has a good accuracy (compared to the optimum) for
chlorophyll andwater, but produces large errors for carotenoids and dry
matter. This agrees with the conclusions from Feret et al. (2008) and
expresses the common assumption that only chlorophyll and water
contents can be accurately predictedwithmodel inversions. Combining
both spectra into absorptance does not change this conclusion although
carotenoid estimations improve. Using only white reflectance leads to
significant improvements that are not much larger than the lower
bound.Masking of theNIR region (columns 4–6) results in a remarkable
improvement in dry matter prediction and moderate improvements in
carotenoid prediction for all three schemes. This sensitivity analysis
marks the importance of an optimal choice of inversion schemes when
combining differentmeasurements (e.g. reflectance and transmittance)
or when model inversion cannot estimate the full set of model
parameters. Optimal results are not assured by the standard inversion
scheme that minimizes both errors in reflectance and transmittance
over the entire 400–2500 nm range. Since this analysis is entirely
model-based, the conclusions do not express a lack of validity in model
structure, but rather express errors inherent to sample variability and
ill-posedness.



Table 2
RMSE for retrieval of biochemical parameters with different inversion schemes using simulated adaxial reflectance (R) and transmittance (T).

Scheme Ra; Tb Ra+Tb Rw,ab Ra; Tb Ra+Tb Rw,ab Lower bound

Spectral range (nm) 400–2500 400–720; 1350–2500 –

Chlorophyll (g/cm2) 5.87 5.70 5.18 6.28 6.00 6.44 4.15
Carotenoids (g/cm2) 5.86 3.06 4.80 3.84 2.74 4.24 0.93
Water (mg/cm2) 1.17 1.13 0.98 1.29 1.27 1.01 0.97
Dry matter (mg/cm2) 1.79 1.72 0.56 0.73 0.71 0.43 0.39

Subscripts refer to datasets a and b. Rw,ab is the inversion of the average white reflectance of a and b. The last column (lower bound) lists the RMSE for the average parameters of a
and b compared to the reference.
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6. Validation

In a first validation section the model's capabilities for approxi-
mating abaxial and adaxial reflectance and transmittance spectra of
different broad-leaved species are tested and an intercalibration
between DHR and BRF is made. The second subsection addresses the
use of DLM in estimating biochemical content from model inversion.
6.1. Simulation of reflectance and transmittance

A model inversion procedure was set up to jointly fit measured
adaxial and abaxial reflectance and transmittance of the LeuvenC
dataset (20 leaves) that was collected with an integrating sphere. In a
first inversion experiment, the contents of chlorophylls, carotenoids,
water and dry matter, the structure parameter (fair), leaf asymmetry
parameters (βpigm, βwdm and βep), the abaxial diffusion parameter (δ)
and the BRDF parameter μ were determined by the inversion
procedure resulting in a ten parameter inversion. A second experi-
ment compared these results to an inversion using default parameter
values for βpigm, βwdm, βep, δ and μ as determined in Section 4.4
resulting in a five parameter inversion. To assess the relative
improvements of a dorsiventral model over a symmetric model, the
same dataset was inverted using the PROSPECT model for which
simulated abaxial and adaxial optical properties are equal. The quality
of the fit is expressed as the root mean squared error (RMSE) between
the measured and simulated spectra.

Fig. 8 shows the agreement betweenmeasured and simulated (ten
parameter inversion) adaxial and abaxial reflectance and transmit-
tance spectra for Citrus sinensis L., a species with considerable
differences between both faces. The fits of all four spectra show a
good approximation between measured and modeled data. The
largest differences are present in the NIR and around the 1850 nm
water absorption region.
Fig. 8. Measured and simulated spectra of reflec
The statistics for all leaves are summarized in Table 3 and show
that DLM is capable of representing the optical properties of the
reference spectra with an average RMSE of 1.3%. The five parameter
version produced overall larger fitting errors (average RMSE is 1.6%)
with the largest differences in the abaxial reflectance. The inversions
using PROSPECT produced for all spectra larger errors as could be
expected for a symmetric model. The spectral fits using DLM in either
a five or ten parameter version on combined abaxial and adaxial
spectra are equal to or better than those reported in Feret et al. (2008)
using the PROSPECT model on only adaxial spectra (RMSE between
1.6% and 3.9%).

An additional experimentwas set up to test the theory of Section 4.3
stating that for a specified range of viewing and illumination conditions
differences betweenDHR and BRF only depend on leaf surface structure
and not on biochemical content or internal structure. This experiment
used adaxial and abaxial reflectance of 12 leaves of the LeuvenC dataset
taken with either integrating sphere or leaf probe. The integrating
sphere measurements were inverted with a five parameter inversion
scheme, identical to the scheme of Section 6.1. The leaf probe
measurements were inverted with the same five parameters and the
additional parameter ν required for BRF (Section 4.3). Predicted water
(R2=0.99), dry matter contents (R2=0.97) and chlorophyll contents
(R2=0.97) fromboth datasets show a good agreement, while predicted
carotenoid content had a moderate agreement (R2=0.76). These
observations suggest that model inversions with leaf probe and
integrating sphere provide consistent results, if model structure
accounts for differences between both instruments.

6.2. Parameter estimation

The performance of DLM in the estimation of biochemical contents
was evaluated on both the LeuvenV and LOPEX datasets. Multiple
inversion schemes are compared implementing the knowledge
gathered in the sensitivity analysis (Sections 5.2 and 5.3). In addition,
tance and transmittance for Citrus sinensis.



Table 3
Average and maximum RMSE (% reflectance) of the fit between measured and simulated directional–hemispherical reflectance and transmittance spectra of the LeuvenC dataset
using ten and five parameter versions of DLM and PROSPECT.

Mean RMSE (%) Maximum RMSE (%)

DLM10 param. DLM5 param. PROSPECT DLM10 param. DLM5 param. PROSPECT

Adaxial reflectance 1.25 1.59 4.22 2.04 2.88 9.48
Abaxial reflectance 1.39 1.85 6.26 2.95 4.25 10.93
Adaxial transmittance 1.02 1.14 4.82 2.29 2.4 13.06
Abaxial transmittance 1.26 1.37 4.09 2.07 2.43 9.78
Average LeuvenV 1.27 1.56 4.95 1.96 2.51 9.90
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DLM is compared to PROSPECT version 5 to investigate whether the
prediction of biochemical contents benefits from the use of a
dorsiventral model. The four biochemical parameters and the
structure parameter are included (free parameters) while for βpigm,
βwdm, βep, δ and μ the average estimated parameters from Section 4.4
are used. For the LeuvenV dataset also ν was included. Attempts to
improve the inversion by including one or more additional para-
meters produced lower prediction accuracies which is ascribed to
over-fitting.

The LeuvenV dataset inversion schemes used combinations of
adaxial reflectance, white reflectance and abaxial reflectance. For the
LOPEX dataset, inversion schemes included combinations of reflec-
tance and transmittance. For both datasets, inversions were made on
either the full 400–2500 nm spectral range or with the NIR region
(720–1350 nm) masked out. The headers of Tables 4 and 5 give an
overview of all schemes.

The schemes and results for the LeuvenV inversion schemes are
listed in Table 4. The schemes using only adaxial reflectance (schemes 1
and 2) produce good results for chlorophyll, water and dry matter, but
low accuracies of carotenoids. Excluding the NIR (scheme 2) leads to a
decrease in accuracy, which indicates that for content estimations from
reflectance an accurate estimation of the leaf structure is required. The
inversion using unweighted white reflectance (scheme 3) has a large
penalty on the accuracy of the dry matter prediction while white
reflectance with exclusion of the NIR (scheme 4) provided superior
results, with very accurate predictions for chlorophyll, water and dry
matter. The accuracy of the dry matter prediction (RMSEr=0.4 mg/
cm2; R2=0.97) is remarkable since this is traditionally assumed to be
Table 4
Statistics of inversion schemes for the Leuven dataset using adaxial reflectance (Rd),
abaxial reflectance (Tb) and white reflectance (Rwh).

Scheme nr. 1 2 3 4 5 7

Model DLM PROSPECT 5

Spectra Rd Rd Rwh Rwh Rd; Rb Rwh

Weighting Equal Excl.
NIR

Equal Excl.
NIR

Excl.
NIR

Excl. NIRs

R2

Chlorophyll 0.91 0.87 0.95 0.95 0.81 0.94
Carotenoids 0.53 0.50 0.52 0.58 0.27 0.53
Water 0.90 0.86 0.90 0.94 0.87 0.92
Dry matter 0.90 0.91 0.28 0.97 0.56 0.97

RMSE regression
Chlorophyll (g/cm2) 5.6 6.6 4.1 4.1 9.7 4.8
Carotenoids (g/cm2) 2.7 2.6 2.9 2.5 4.3 2.6
Water (mg/cm2) 2.0 2.3 2.1 1.6 2.2 1.8
Dry matter (mg/cm2) 1.0 0.9 2.5 0.4 1.9 0.5

RMSE no regression
Chlorophyll (g/cm2) 5.9 6.9 5.6 5.6 11.7 9.7
Carotenoids (g/cm2) 6.0 4.7 8.4 5.9 5.8 5.5
Water (mg/cm2) 2.0 2.3 2.5 1.7 2.3 2.0
Dry matter (mg/cm2) 2.0 1.7 3.0 1.7 3.2 0.8

RMSE spectrum fit 0.5% 0.5% 1% 0.8% 1.2% 0.8%
hard to estimate on fresh leaf material due to masking by water
absorption (Fourty et al., 1996). The cause of the impact of the NIR on
estimated dry matter accuracy may be found in different fractional
constitutions of the total drymass, that is expected to be spectrallymost
pronounced in the NIR (Section 5.2). In addition the large within-leaf
variability of white reflectance in the NIR (Fig. 7), attributed to variable
amounts of lateral scattering between the leaf and the background (see
Section 5.3), may negatively impact the accuracy. Combinations of
adaxial and abaxial reflectance (scheme 5) only provided results of
moderate accuracy, which indicates that incorporation of abaxial
reflectance, which is significantly more sensitive to leaf asymmetry,
providesnoadditional benefits. This conclusion is in agreementwith the
findings of Section 5.3 since combining two spectra of different types
into one inversion may degrade rather than improve results due to
sampling errors. Schemes using DLM show a bias (overestimation) of
the drymatter contents (RMSENRMSEr), indicating that the drymatter
specific absorption spectrum needs to be scaled when porting from
PROSPECT to DLM. The accuracies using PROSPECT 5 (scheme 6) are not
noticeably different from those using DLM (scheme 4), although the
chlorophyll estimates are more biased while the dry matter estimates
are less biased.

Table 5 lists the results of the inversions of the LOPEX dataset.
Inversions using only reflectance (scheme 1) or only transmittance
(scheme 2) produce good accuracies forwater andmoderate accuracies
for dry matter. The combined use of reflectance and transmittance
without band weighting (scheme 3) improves the accuracy for
chlorophylls and water, but decreases the accuracy for dry matter.
Excluding the NIR (scheme 4) further improves accuracy, with an
important decrease in dry matter RMSEr from 1.8 to 1.1 mg/cm2.
The combination of reflectance and transmittance into absorptance
Table 5
Statistics of inversion schemes for the LOPEX dataset using spectra (adaxial) reflectance
(R) and transmittance (T).

Scheme nr. 1 2 3 4 5 6

Model DLM PROSPECT 5

Spectra R T R; T R; T R+T R+T

Weighting Equal Equal Equal Excl. NIR Excl. NIR Excl. NIR

R2

Chlorophyll 0.41 0.46 0.57 0.58 0.63 0.64
Water 0.91 0.90 0.94 0.95 0.93 0.95
Dry matter 0.64 0.69 0.49 0.81 0.80 0.80

RMSE regression
Chlorophyll (g/cm2) 14.1 15.6 12.4 11.9 11.1 11
Water (mg/cm2) 2.1 2.7 1.7 1.7 1.8 1.8
Dry matter (mg/cm2) 1.5 1.4 1.8 1.1 1.1 1.2

RMSE no regression
Chlorophyll (g/cm2) 15.0 15.6 12.4 12.7 11.3 11.0
Water (mg/cm2) 2.4 2.9 1.8 1.8 1.8 1.8
Dry matter (mg/cm2) 2.2 2.6 4.7 3.1 3.6 3.8

RMSE spectrum fit 0.9% 0.9% 1.4% 1.2% 1.9% 1.8%



Fig. 9. Comparison between measured and predicted contents of (a) chlorophylls (μg/cm), (b) carotenoids (μg/cm), (c) water (mg/cm) and (d) dry matter (mg/cm) using DLMwith
parameters from Table 6. (● Leuven, ○ LOPEX).

Table 6
Extended statistics for the best inversion schemes for the Leuven and LOPEX datasets.

Dataset Leuven LOPEX

Spectra Rwh R+T

Weighting Excl. NIR Excl. NIR

# parameters 6 5

R2

Chlorophyll 0.95 0.63
Carotenoids 0.58
Water 0.94 0.93
Dry matter 0.97 0.80
Car/Chl ratio 0.24
Fraction of water 0.98 0.93

Slope regression
Chlorophyll 0.92 1.04
Carotenoids 0.62
Water 0.97 1.00
Dry matter 0.81 0.63
Car/Chl ratio 0.93
Fraction of water 1.04 1.16

RMSE regression
Chlorophyll (g/cm2 4.1 11.1
Carotenoids (g/cm2) 2.5
Water (mg/cm2) 1.6 1.8
Dry matter (mg/cm2) 0.4 1.1
Car/Chl ratio (–) 6.4%
Fraction of water (%) 2.4% 4.1%

RMSE no regression
Chlorophyll (g/cm2) 5.6 11.3
Carotenoids (g/cm2) 5.9
Water (mg/cm2) 1.7 1.8
Dry matter (mg/cm2) 1.7 3.5
Car/Chl ratio (–) 6.7%
Fraction of water (%) 3.7% 10%

RMSE spectrum fit 0.8% 1.9%
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(scheme5) providesno clear benefit. The PROSPECT5 schemeproduced
almost equal accuracies.

For Tables 4 and 5, the bottom line lists the RMSE of reflectance or
transmittance of the fit of the measured on the predicted spectrum.
For none of the inversion schemes could this value be related to the
accuracy of biochemical content estimates, indicating that improve-
ments in approximating the exact shape of reflectance or transmit-
tance curves may not necessarily lead to a better prediction of leaf
biochemistry.

Care should be taken when directly comparing the LOPEX results to
the Leuven results. The coefficients of determination should not be
compared since they also reflect the variability of the dataset
(parameter range), but RMSE values can be compared. The overall
accuracies for the predicted water contents are almost equal to the
Leuven dataset. The LOPEX accuracies for chlorophyll are significantly
lower whichmay be caused by errors in pigment extraction procedures
as reported by Feret et al. (2008). This result agrees with the lower
accuracies reported by Jacquemoud et al. (1996) and Feret et al. (2008).
The accuracy of drymatter contents is comparable to schemes 1 and 2 of
the Leuven dataset that use only adaxial reflectance.

Fig. 9 shows scatter-plots of the measured and predicted values of
the four inverted components for the best inversion schemes on both
datasets and Table 6 lists extended statistics for these schemes. Two
additional parameters were included: the water content as fraction of
the total leaf fresh weight and the ratio of chlorophylls to carotenoids.
The fraction of water can be estimated with a very high accuracy for
both datasets. This also indicates that prediction errors for water and
dry matter may be correlated. The low accuracy of the car/chl ratio on
the other hand may limit the usability of the carotenoids estimates in
biochemical applications. The slope of the regression indicates the
bias in the prediction which is acceptable for chlorophyll and water
contents. The dry matter content is overestimated (slopeb1) for both
the LeuvenV and LOPEX datasets, which indicates that its specific
absorption spectrum should be scaled. The same applies to the
carotenoid estimates of the LeuvenV dataset. Note that only measured
values of the water specific absorption spectrum are available, while
other spectra (dry matter, carotenoid and chlorophyll) are deter-
mined by inversion procedures and can therefore be model
dependent (specific absorption spectra were used from the PROSPECT
5 model). Differences in biases between both datasets may be ex-
plained in procedural differences in content estimations (e.g. pigment
extraction, weighting).
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Knowledge gathered from the inversion of leaf optical models can
also be applied to the inversion of canopy radiative transfer models.
Although governed by different processes, the principles of band
weighting and alternative methods to combine different (multi-
angular) reflectance spectra may significantly improve the retrieval of
canopy biochemistry and structure parameters.

The comparable performance of DLM and PROSPECT 5 on both
datasets may imply that no large gains in accuracy are to be expected
by introducing more sophisticated models that provide a better
representation of leaf internal structure. In explanation of these
results, the implicit inclusion of leaf asymmetry into the PROSPECT 5
model (Section 4.7) via the refractive index as an effective parameter
can be pointed out. An explicit treatment of leaf asymmetry as is
provided by DLM may however become an important factor when a
further breakdown of pigments (e.g. chlorophyll a and b) or dry
matter (e.g. lignin, cellulose, sugars…) is targeted.

7. Conclusions

In this research, the impact of leaf asymmetry on radiative transfer
was modeled and investigated. A dorsiventral leaf model was
introduced that considers the asymmetric distribution of pigments,
water and dry matter. The differences in light diffusion between
adaxially and abaxially incident collimated light are modeled by
introducing an abaxial diffusion parameter. Both adaxial and abaxial
reflectance and transmittance of a wide variety of leaves can be
accurately simulated with good precision. The precise simulations of
optical properties of both faces may facilitate improvements in
canopy radiative transfer modeling, since dorsiventral properties of
leaves can have a significant impact on canopy reflectance. Continued
research efforts are required to evaluate this potential.

The sensitivity analysis focused on optimizing the model inversion
process. Results indicate that parameter estimation frommodel inversion
may be improved by (i) combining reflectance and transmittance
measurements to minimize the impact of leaf structure (ii) adjusting
procedures to account for variability in the drymatter specific absorption
spectrum and (iii) inversion schemes that minimize the impact of
sampling errors. The white reflectance was found to exhibit favorable
qualities making it a suitable candidate to replace reflectance and
transmittance measurements for parameter estimations.

Knowledge gathered in the sensitivity analysis was applied in
different model inversion schemes to retrieve pigment, water and dry
matter content for two independently collected datasets, LeuvenV
(2008, abaxial, adaxial and white reflectance) and LOPEX (1994,
reflectance and transmittance). For the LeuvenV dataset, the white
reflectance measure returned the most accurate estimates for all four
parameters, provided the NIR (720–1350 nm) was excluded from the
inversion process. Additional knowledge on the leaf abaxial reflec-
tance could not improve these estimates. Inversions of the LOPEX
dataset demonstrated that by excluding the NIR significant improve-
ments in the estimation of leaf dry matter can be achieved. Overall
accuracies for water and dry matter contents in LOPEX were equal to
the accuracies in the Leuven dataset for equal inversion schemes.
Combinations of two spectra of a different type into a single inversion
did not improve accuracies, as was predicted in the sensitivity
analysis. The good accuracies for dry matter content estimation may
encourage attempts breaking down the total dry matter estimates
into cellulose, lignin, protein, sugar and starch components. No impact
on content prediction accuracy was found by the use of biconical
reflectance measurements instead of DHR. The major improvements
in content predictions were found by procedures that account for
sampling errors, uncertainly in the specific absorption spectra and
variability in specular reflectance rather than by the use of a more
sophisticated (dorsiventral) model structure.

Since DLM is designed for broad-leaved species, no tests were
performed on coniferous needle-shaped leaves, although the dorsi-
ventral structure of some species with differentiated mesophyll such
as Abies sp. (Johnson et al., 2005) may prove to be compatible.

DLM has important potential in the study of leaf radiative trans-
fer while it can also be used to relate anatomic differences causing
asymmetric scattering and absorption to evolutionary and ontological
strategies of plants to optimize the interaction with their light
environment.
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